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I am typing these notes mainly as a means to an active review for my oral examination.
They are not meant to be exhaustive, of course, and may contain inaccuracies, of course,
and will almost surely have plenty of typos, of course. If something seems too simplified,
I apologize beforehand: these notes are meant as a summary.

My major topic was Probability; my minor topic was Fractals. I will list bibliography
on the fly.

1 Probability: Theory and Examples. 4th Edition. (Rick
Durret)

I feel comfortable with the fundamentals of measure theory, so I will skip the context-
setting aspect of introductory probability. Basic vocabulary is also omitted.

1.1 Some Probability Distributions

Important distributions: Gaussian, Poisson, Geometric, Exponential, Binomial.
What do they measure? What is a situation described by them?

• Gaussian. Describes distributions where one expects values to be concentrated
around a certain mean, which is also its mode. Mathematically important because
it is the central limit of sums of i. i. d. random variables.

• Poisson. A Poisson of parameter λ describes how many occurrences of an event
happen in a fixed interval (i.e., in the next minute) if each occurrence is independent
of the others, and the average rate of occurrence is known. This can be treated
rigorously to see that the Poisson distribution is the limit of Binomial distributions.

• Geometric. If a trial is executed successfully with probability p, each trial inde-
pendent of other, then the number of trials needed for one success is modelled by a
geometric distribution of parameter p.

• Exponential. The continuous version of the Poisson distribution.

• Binomial. A binomial distribution of parameters (n, p) describes the probability of
having k successes out of n tries, if you succeed independently, and with probability
p, each try.

The following table summarizes the relevant information of these distributions.
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Distribution Params Density Fn. Mean Var Char. Fn.

Gaussian µ, σ f(x) = 1
σ
√

2π
e

1
2

(x−µ)2

σ2 µ σ2 eitµ−
1
2
σ2t2

Poisson λ f(k) = e−λ λ
k

k!
λ λ eλ(eit−1)

Geometric p f(k) = (1− p)k−1p 1
p

1−p
p2

p
e−it−(1−p)

Exponential λ f(x) = λe−λx 1
λ

1
λ2

(1− itλ−1)−1

Binomial n, p f(k) =
(
n
k

)
pk(1− p)n−k np np(1− p) (1− p+ peit)n

1.2 Weak and Strong Law of Large Numbers

The following are fundamental theorems in probability theory.

Theorem 1 (Weak Law of Large Numbers). Let X1, X2, . . . be i.i.d. with E(X1) = µ and
Var(X1) = σ2. If Sn = X1 + . . .+Xn, then Sn/n→ µ in probability.

Proof. By Chebyshev’s inequality, for a fixed ε > 0,

lim
n→∞

P(|Sn/n− µ| > ε) ≤ lim
n→∞

Var(Sn)

n2ε
= lim

n→∞

σ2

nε
= 0.

Theorem 2 (Strong Law of Large Numbers). Let X1, X2, . . . be i.i.d. with E(|X1|) <∞
and E(X1) = µ. If Sn = X1 + . . .+Xn, then Sn/n→ µ almost surely.

Proof. The more basic proof is a sequence of analysis arguments. More enlightening, and
easier to remember, is the proof using (backwards) Martingales.

Let Sn = X1 + . . . + Xn, and define Y−n = Sn/n, for n ≤ 0. Also define F−n =
σ(Sn, Xn+1, Xn+2, . . .). We claim that Y−n is a reversed Martingale with respect to the
filtration F−n. To see this,

E(Y−(n−1)|F−n) = E((Sn−1 +Xn −Xn)/(n− 1)|F−n)

=
Sn
n− 1

− E(Xn/(n− 1)|F−n)

=
Sn
n− 1

− Sn
n(n− 1)

, by symmetry.

=
Sn
n

= Y−n.

Since the mean of X1 is finite, by Martingale convergence theorems, we know there is
a limit. It is limn→∞ Sn/n = E(X1|F∞) almost surely . Since F∞ is clearly made up of
“exchangeable events”, Hewitt-Savage’s 0-1 Law tells us that E(X1|F∞) = µ.

1.3 Borel-Cantelli Lemmas

If An is a sequence of events (measurable sets), we define the event

{An infinitely often} = {An i.o.} = lim supAn =
⋂
n≥1

⋃
m≥n

Am.
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Theorem 3 (First Borel-Cantelli Lemma). If
∑

n≥1 P(An) <∞, then P(An i.o.) = 0.

Proof. Notice that for any k,

P(An i.o.) ≤ P(∪m≥kAm) ≤
∑
m≥k

P(Am).

This holds for any k ∈ N, and the series converges: we get the result.

The complementary result requires independence.

Theorem 4 (Second Borel-Cantelli Lemma). If the events An are mutually independent
and

∑
n≥1 P(An) =∞, then P(An i.o.) = 1.

Proof. We recall the ever helpful inequality 1 − x ≤ e−x, when x > 0. Being loose with
notation, we get

1− P(An i.o.) = P(An finitely o.) = P(∪n≥1 ∩m≥n Acm)

= lim
n→∞

P(∩m≥nAcm) , by monotone convergence

= lim
n→∞

∏
m≥n

[1− P(Am)] , by independence

≤ lim
n→∞

∏
m≥n

e−P(Am) = lim
n→∞

e−
∑
m≥n P(Am) = 0.

1.4 Weak Convergence

We say r.v. Xn → X in distribution (or weakly) if Fn(x) → F (x) at every x which is a
point of continuity of F (Fn is the distribution function of Xn). Equivalently, we have
this type of convergence if, for every bounded measurable g we have E(g(Xn)→ E(g(X))
(which explains more clearly the reason behind calling it weak convergence).

Three theorems seem particularly helpful.

Theorem 5. If Xn → X in distribution, there exist Yn and Y with Yn
d
= Xn and Y

d
= X,

such that Yn → Y almost surely.

Theorem 6 (Portmanteau’s Theorem). The following are equivalent.

• Xn → X in distribution.

• For every open A ⊂ R, it is true that lim infn→∞ P(Xn ∈ A) ≥ P(X ∈ A).

• For every closed B ⊂ R, it is true that lim supn→∞ P(Xn ∈ B) ≤ P(X ∈ B).

• For every measurable set C with P(X ∈ ∂C) = 0, we have limn→∞ P(Xn ∈ C) =
P(X ∈ C).

Theorem 7 (Continuity Theorem). Say φn is the characteristic function for Xn and φ
is the one of X. If φn → φ as n→∞ point-wise, then Xn → X in distribution, provided
that φ is continuous at 0.
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1.5 Central Limit Theorem

Another quite important theorem is the Central Limit Theorem.

Theorem 8 (Classic Central Limit Theorem). Let X1, X2, . . . be i.i.d. with mean µ and
variance σ2. Define Sn = X1 + . . . + Xn. Then, Sn/

√
n converges in distribution to

N (µ, σ), a normal distribution with mean µ and standard deviation σ.

Proof. Taking (Xn − µ)/σ instead of Xn, it suffices to show that Sn/
√
n → N (0, 1) in

distribution when the Xi have mean 0 and standard deviation 1.
Let φk be the characteristic function of Xk. Since

φk(t) = E(eitXk) =
∑
m≥0

E

(
(itXk)

m

m!

)
,

we can write φk(t) = 1− t2

2
+ o(t2) as t→ 0. If φ is the ch. fn. of Sn/

√
n, then

φ(t) =
n∏
k=1

φk

(
t√
n

)
= φ1

(
t√
n

)n
=

(
1− t2

2n
+ o

(
t2

n

))n
−→ e−t

2/2 as n→∞ .

The ch. fn. of N (0, 1) is e−t
2/2, which completes the proof.

Slightly more general, and sometimes useful, is the following. Recall that E(X;A) =
E(X · 1A)

Theorem 9 (Lindeberg-Feller Theorem). For each n, let Xn,1, Xn,2, . . . , Xn,n be indepen-
dent with E(Xn,m) = 0 and Var(Xn,m) = σ2

n,m. If

• limn→∞
∑n

m=1 σ
2
n,m = σ2 > 0, and

• For every ε > 0, we have
∑n

m1
E(X2

n,m; |Xn,m| > ε) −→ 0 as n→∞,

then Sn = Xn,1 + . . .+Xn,n → σ2N (0, 1) in distribution as n→∞.

1.6 Local Limit Theorem

We say a r.v. X has lattice distribution if there exist b, h ∈ Z such that P(X ∈ b+hZ) = 1.
The minimum number h that satisfies this condition is called the span of X.

Theorem 10 (Local Limit Theorem). Let X1, . . . be i.i.d. with E(X1) = 0, Var(X1) = σ2,
and a common lattice distribution of span h. If P(X1 ∈ b + hZ) = 1, define Sn =
X1 + . . .+Xn and Ln = {(nb+ hZ)/

√
n}. Also make

p(x) = P

(
Sn√
n

= x

)
, for x ∈ Ln,

and

n(x) =
1

σ
√

2π
e−x

2/2σ2

.

Then,

sup
x∈Ln

∣∣∣∣√nh p(x)− n(x)

∣∣∣∣ −→ 0, as n→∞.
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1.7 Martingales

A martingale can be thought of as a fair game. The rigorous way of stating this is via
conditional expectation.

1.7.1 Conditional Expectation

Let G ⊂ F be two σ-algebras.
If X is F -measurable, there is a G-measurable r.v. Y such that

∫
A
Y dP =

∫
A
XdP for

any A ∈ G. It is denoted by E(X|G); it is called conditional expectation.
By Radon-Nikodym’s Theorem, it always exists. If ν(·) =

∫
(·)XdP, then ν is a measure

supported G. Is is clear that ν � P when P is restricted to G. Hence, there exists dν/dP,
and we call it E(X|G), such that∫

A

XdP = ν(A) =

∫
A

(dν/dP)dP =

∫
A

E(X|G)dP.

There are at least four useful properties of the conditional expectation.

• Linearity. E(aX + b|G) = aE(X|G) + b.

• Monotonicity. If X ≤ Y , then E(X|G) ≤ E(Y |G).

• If X is G-measurable and Y is F -measurable, then E(XY |G) = XE(Y |G).

• Jensen’s Inequality. If φ is convex, and both E|X| < ∞ and E|φ(X)| < ∞, then
φ(E(X|G)) ≤ E(φ(X)|G). In particular, if p > 1, then E(|E(X|G)|p) ≤ E(|X|p|G).

1.7.2 Martingale Convergence

Definition 1 (Martingales and Sub/Supermartingales). Let F1 ⊂ F2 ⊂ . . . be a filtration
of σ-algebras. Let Xn be Fn-measurable. If E(Xn|Fn−1) = Xn−1, we say {Xn} is a
martingale. If E(Xn|Fn−1) ≤ Xn−1, it is a supermartingale; if E(Xn|Fn−1) ≥ Xn−1,
it is a submartingale.

Definition 2 (Stopping Times). N is a stopping time if it is positive-integer-valued
and {N = n} ∈ Fn.

Theorem 11. If N is a stopping time and Xn is a (super/sub) martingale, then XN∧n
is a (super/sub) martingale.

The following theorem is key. Many posterior results rely on it.

Theorem 12 (Martingale Convergence Theorem). If Xn is a submartingale with finite
supn E(X+

n )), then there exists a r.v. X, with E|X| <∞, such that Xn → X a.s.

Proof. Let Un denote the “up-crossings” of [a, b] that Xn completes. Geometrically and
intuitively, we note that

(b− a)EUn ≤ |a|+ EX+
n .

Hence, Un <∞ a.s. As this is true for every a, b, we have

P

{ ⋃
a,b∈Q

lim inf Xn ≤ a < b ≤ lim supXn

}
= 0.

Thus, point-wise, there is a limit X a.s.
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1.7.3 Doob’s Inequality and Lp Convergence

We list four important theorems.

Theorem 13. If Xn is a submartingale, and N is a stopping time with P(N ≤ k) = 1
for some k, we have

EX0 ≤ EXN ≤ EXk.

Theorem 14 (Doob’s Inequality). Let Xm be a submartingale. Define Mn = max1≤m≤nX
+
n ;

for λ > 0, define A = {Mn ≥ λ}. Then,

λP(A) ≤ E(Xn1A) ≤ EX+
n .

Using Holder’s theorem, Fubini’s theorem, a bit of analysis, and some cleverness, we
can conclude:

Theorem 15 (Doob’s Lp Maximum Inequality). Let Xn be a submartingale. With the
previous notation, for ∞ > p > 1,

E(Mp
n) ≤

(
p

p− 1

)p
(E(X+

n ))p.

Martingale convergence and Lp convergence imply:

Theorem 16 (Lp convergence theorem). If Xn is a martingale with supE|Xn| < ∞,
where 1 < p <∞, there exists a X in L1 such that Xn → X a.s. and in Lp.

1.7.4 Uniform Integrability and L1 Convergence

Definition 3. A family of r.v. {Xn} is uniformly integrable if, for every ε > 0, there
exists a K > 0 such that, for all n, we have

E(|Xn|1|Xn|>K) < ε.

Martingales are prime examples of uniformly integrable families.

Theorem 17. If X is F-measurable and in L1, then the family of r.v. given by

{E(X|G) : G ⊂ F is a sub σ-algebra}

is uniformly integrable.

One useful characterization is the following.

Theorem 18. If Xn → X in probability, then the following are equivalent:

• Xn → X in L1.

• The Xn are uniformly integrable.

• E|Xn| → E|X| <∞.

We have three useful theorems.

Theorem 19. Suppose Fn ↑ F∞, then E(X|Fn)→ E(X|F∞) a.s. and in L1.

A consequence of this is:

Theorem 20 (Lévy’s 0-1 Law). If Fn ↑ F∞ and A ∈ F∞, then E(1A|Fn)→ 1A a.s.

Theorem 21 (Dominated Convergence for Conditional Expectation). Suppose Fn ↑ F∞,
Xn ∈ Fn with Xn → X a.s., and that there exists Y ∈ L1 such that |Xn| ≤ Y , then

E(Xn|Fn)→ E(X|F∞) a.s.
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1.7.5 Optional Stopping Times

A stopping time can be thought of as an “optionally terminated” process, as you may
choose to keep effectuating the stochastic process or not. To be honest, I am not sure
why this subsection is called this way other than the somewhat superficial reason I just
gave. However, there are two important theorems relating to stopping.

Theorem 22. If N is a stopping time and Xn is a uniformly integrable submartingale,
then XN∧n is also uniformly integrable.

To prove the main theorem of this section, this result is useful.

Theorem 23. Given a uniformly integrable submartingale Xn, if N is a stopping time,
we have

EX0 ≤ EXN ≤ EX∞,

where X∞ = limn→∞Xn.

Theorem 24 (Optional Stopping Theorem). Let L ≤ M be two stopping times, and
Xn∧M be a uniformly integrable submartingale. Then E(XL) ≤ E(EM). Further,

XL ≤ E(XM |FL).

A recurrent case where this theorem is used is when Xn is actually a martingale and
L = 0

1.8 Finite Markov Chains

This section was done following the exposition of Markov Chains and Mixing Times. 1st
Edition. (David A. Levin, Yuval Peres, and Elizabeth L. Wilmer).

Definition 4 (Markov Chain). A Markov chain is a stochastic process X1, X2, . . . where

P(Xi = a|Xi−1 = b1, . . . , X1 = bi−1) = P(Xi = a|Xi−1 = b1).

Hence, if X1 can only take n different values (meaning the “state space” of the Markov
chain has n states), the complete information of the Markov chain can be visualized in
an n × n matrix P , a Markov transition matrix. The condition

∑n
j=1 Pij = 1 must be

satisfied for every 1 ≤ i ≤ n. Such a matrix is called a stochastic matrix. Each row of
such a matrix defines a probability measure, which we call Pi. It seems to be customary
to use x, y, z for naming states, instead of i, j, k.

Something useful to note and remember is that P n(x, y) represents the probability of
starting at state x and being at state y after precisely n steps.

1.8.1 Stationary Distribution

If for every pair of states x, y there is a n > 0 such that P n(x, y) > 0, we say the chain
is irreducible.

A return time is a time n ≥ 1 such that P n(x, x) > 0. The period of the state x is
the gcd of all return times. If every period is 1, we say the chain is aperiodic.
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Definition 5 (Stationary Distribution). If π is a measure on state space Ω that satisfies
π = πP , or, more explicitly,

π(y) =
∑
x∈Ω

π(x)P (x, y),

we say π is a stationary distribution.

The following is a fundamental fact that allows the study of mixing times.

Theorem 25 (Existence and Uniqueness of a Stationary Distribution). Let P be be the
transition matrix for an irreducible Markov chain. Then, there exists π, a probability
distribution on Ω, such that

• π = πP and π(x) > 0 for every x ∈ Ω.

• If τ+
x is the first return time to x, then π(x) = 1/(Ex(τ

+
x )).

Also, π is unique.

1.8.2 Reversibility

Definition 6 (Detailed Balance Equations). Let π be a probability on Ω. For all x, y ∈ Ω,
the expressions

π(x)P (x, y) = π(y)P (y, x)

are called the detailed balance equations.

If π satisfies the detailed balance equations, it is a stationary measure for P .
We can observe the following, which is suggestive of the title of this subsection,

Pπ(X0 = x0, . . . , Xn = xn) = Pπ(X0 = xn, . . . , Xn = x0).

An irreducible chain P having a distribution π which satisfies the detailed balance
equations is called reversible.

Definition 7 (Time Reversal of a Markov Chain). Let P be an irreducible chain with
stationary distribution π. The time reversal of P is the chain with matrix

P̂ (x, y) =
π(y)P (y, x)

π(x)

When a Markov chain is reversible, we have P = P̂ .

1.8.3 Convergence to Uniformity

The following is a quantitative version of a very important qualitative result.

Theorem 26 (Convergence Theorem). Let TV be the total variation distance. Sup-
pose that P is irreducible and aperiodic with stationary distribution π. Then there exist
constants 0 < α < 1 and C > 0 such that

max
x∈Ω
||P n(x, ·)− π||TV ≤ Cαn.

In particular, P n converges to its stationary distribution as n→∞.
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2 The Probabilistic Method. 4th Edition. (Noga Alon
and Joel H. Spencer)

Briefly, the probabilistic method is using probability theory to solve problems in combi-
natorics. The focus of the probabilistic method is learning how to do, rather than learning
theory. This hands-on aspect is even more emphasized here than in other areas of math.
As such, each section will list the main theoretical tools of a given chapter and illustrate
one example showing them in action.

2.1 The Basic Method

Key Idea 1. To assert something exists/is possible, show the probability of it happening
is positive.

Example 1.

Let R(n, k) be the Ramsey numbers.

We want to show that if
(
n
k

)
· 21−(k2) < 1, then R(k, k) > n.

Let G be a complete graph with n vertices. We color the edges either red or blue
independently and with probability 1/2. Let I be a subset of k vertices. Let AI denote
the event where I is a monochromatic k-clique. Thus, the probability that there is a
monochromatic k-clique is

P(∪|I|=kAI) ≤
∑
|I|=k

P(AI) =
∑
|I|=k

2(
k
2

) =

(
n

k

)
· 21−(k2) < 1.

Hence, it is possible that there are no monochromatic k-cliques, and R(k, k) > n.
From this, it follows that R(k, k) > b2k/2c.

2.2 Linearity of Expectation

Key Idea 2. Expectation is a linear functional. Also, if E(X) = µ, then there are
realizations ω1, ω2 such that X(ω1) ≥ µ and X(ω2) ≤ µ.

Example 2.

Let v1, . . . , vn ∈ Rn be unit-length vectors. We claim there exist ε1, . . . , εn with values
±1 such that |

∑
εivi| ≤

√
n.

Choose each εi to be ±1 with probability 1/2 and independently. If X = |
∑
εivi|, then

E(X2) =
∑
i,j

E(εiεj)vi · vj =
n∑
i=1

E(ε2i )|vi|2 = n.

The result follows.

2.3 Alterations

Key Idea 3. Sometimes a problem is too specific. Un-restrain the conditions a bit, use
the probabilistic method, and then tweak the result deterministically.
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Example 3.

For a set S of n points in the unit square U , let T (S) be the minimum area of a triangle
whose three vertices are distinct points of S. We claim there is a set S of n points in U
such that T (S) ≥ 1/(100n2).

Let P,Q,R be three points uniformly chosen from U . Let µ be the area of the triangle
they determine. We wish to bound from above the quantity P(µ < ε).

Let x be the distance between P and Q. We have P(b ≤ x ≤ b+∆b) ≤ π((b+∆b)2−b2),
and when ∆b → 0, we get P(b ≤ x ≤ b + db) ≤ πb2db. If x = b and µ < ε, then R must
be in a strip of width 4ε/b and length at most

√
2. Hence, knowing that b is bounded by√

2,

P(µ < ε) ≤
∫ √2

0

2πb

(
4ε

b

√
2

)
db ≤ 16πε.

Now, let P1, . . . , P2n be uniformly and independently chosen points in U ; let X be
the number of triangles PiPjPk with area less than 1/100n2. The probability of this
happening is at most 0.6n−2. Hence,

E(X)

(
n

3

)
(0.6n−2) < n.

Thus, there exists a set of 2n points in which at most n triangles have area less than
1/100n2. Removing one point from each of these triangles (this is the alteration) leaves
us with a set of at least n points in which no triangle has area less than 1/100n2.

2.4 Second Moment Method

Key Idea 4. Sometimes, looking at only expected values and probabilities by themselves is
not enough. Chebyshev’s inequality is also helpful. Any argument that relies on computing
a variance and using Chebyshev’s inequality is called the “second moment method”.

Theorem 27 (Chebyshev’s Inequality). For any λ > 0, we have

P(|X − E(X)| ≥ λ) ≤ Var(X)

λ2
.

Example 4.

Here is a result from number theory. Let ν(n) be the number of distinct primes p
dividing n. Let ω(n) → ∞ arbitrarily slowly. The the numbers of x in {1, . . . , n} such
that

|ν(x)− ln lnn| > ω(n)
√

ln lnn

is o(n).
Let x be randomly chosen from {1, . . . , n}. For p prime, set Xp = 1 if p|x or Xp = 0

otherwise. Set M = n1/10, and make X =
∑

p≤M Xp. At most 10 different numbers less
than M can divide x ≤ n, so that ν(x) − 10 ≤ X(x) ≤ ν(x), so bounds on X translate
to bounds on ν.

Observe that

E(Xp) =
bn/pc
n

=
1

p
+O

(
1

n

)
.
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Hence,
E(X) = ln lnn+O(1),

where we are using the number theoretic fact that
∑

p≤m = ln lnm+O(1).
To compute the variance, we have

Var(X) =
∑
p≤M

Var(Xp) +
∑
p 6=q

Cov(Xp, Xq).

Further, X2
p = Xp, so Var(Xp) = (1/p)(1− 1/p) +O(1/n), and∑

p≤M

Var(Xp) ≤
∑
p≤M

1

p
+O(1) = ln lnn+O(1).

For the covariances, XpXq = 1 only if pq|x, hence

Cov(Xp,Xq) = E(XpXq)− E(Xp)E(Xq) ≤
1

n

(
1

p
+

1

q

)
.

Thus, ∑
p 6=q

Cov(Xp, Xq) ≤
2M

n

∑ 1

p
= o(1).

Similarly,
∑

p 6=q Cov(Xp, Xq) ≥ −o(1). Thus, for any λ > 0,

P(|X − ln lnn| > λ
√

ln lnn) ≤ λ−2 + o(1).

Since |X − ν| ≤ 10, we get the result.

2.5 Lovász’s Local Lemma

Key Idea 5. When events of positive probability are independent, the probability of all of
them happening, perhaps small, is still positive. Independence can be relaxed to “bounded
dependence”. Lovász’s Local Lemma gives a quantitative way of doing this.

While the Local Lemma is more general, one version that is used often is the following.

Theorem 28 (The Local Lemma; Symmetric Case). Let A1, A2, . . . , An be events in an
arbitrary probability space. Suppose that each event Ai is mutually independent of a set
of all the other Aj but at most d, and that P(Ai) ≤ p for all | ≤ i ≤ n. If

ep(d+ 1) ≤ 1,

then P(∩ni=1A
C
i ) > 0.

Example 5.

For a k-coloring of R, which is a function c : R → {1, 2, . . . , c}, we say a set T ⊂ R is
multi-colored if c|T is surjective. The example is the following result.

Let m and k be two positive integers satisfying

e(m(m− 1) + 1)k

(
1− 1

k

)m
≤ 1.
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Then, for any set S of m real numbers, there is a k-coloring so that each translation x+S
(for any x ∈ R) is multi-colored.

The solution is a combination of combinatorics and topology.
First, we fix a finite subset X ⊂ R and show the existence of a k-coloring so that each

translation x+ S (for x ∈ X) is multi-colored.
We use the Local Lemma for this. Call Y = ∪x∈Xx + S, and the probability space is

given by uniformly k-coloring the elements of Y . For each x ∈ X, the event Ax is “x+S
is NOT multi-colored”. Then P(Ax) ≤ k((k − 1)/k)m (use at most k − 1 colors for the
elements of x + S). Also, Ax is independent of Ay if (x + S) ∩ (y + S) = ∅, so Ax is
dependent on at most m(m − 1) events Ay. By the Local Lemma, there is a k-coloring
that makes every x+ S multi-colored.

To extend this result, we employ a compactness argument. By Tikhonov’s Theorem,
the space {1, . . . , k}R is compact in the product topology. The elements of this space
are k-colorings. In this space, for every fixed x, the set Cx of all colorings, such that
x+ S is multi-colored, is closed. The previous paragraph showed that the intersection of
finitely many Cx is non-empty. By compactness, and the “nested-compacts argument”,
the intersection of all Cx is non-empty. Any c in this intersection satisfies the property
we were looking for.

2.6 Correlation Inequalities, FKG

Key Idea 6. Results of the type E(XY ) ≷ E(X)E(Y ) are useful.

Definition 8 (Distributive Lattice). A lattice is a partially ordered set in which any
two elements x, y ∈ L have a unique minimal upper bound, denoted x∨ y, and a a unique
maximal lower bound, denoted x ∧ y. A lattice is distributive if, for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Theorem 29 (KFG Inequality). A function µ : L→ R
+, where L is a finite distributive

lattice, is called log-supermodular if, for all x, y ∈ L,

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y).

Let L be a finite distributive lattice, and µ be log-supermodular. Then, for any two
increasing functions f, g : L→ R

+, we have(∑
x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≤

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

f(x)

)
.

If f and g are both decreasing, the result is still true. If one of f and g is increasing and
the other decreasing, the inequality is reversed.

If µ is a probability measure, then the KFG inequality says E(f)E(g) ≤ E(fg).

Example 6.

Let G(n, p) be the Erdös-Renyi graph. Let H be the event where G is Hamiltonian;
and P denotes the event where G is planar. The FKG inequality can be used to prove
that P(P ∩H) ≤ P(P )P(H).
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2.7 Martingale Methods

Key Idea 7. Use martingales and Lipschitz functions to access the world of concentration
inequalities.

We use finite-time martingales whose domain Ω is G(n, p).
First, some constructions.
The Edge Exposure Martingale. Let the random graph G(n, p) be the underlying

probability space. Label the potential edges {i, j} ⊂ [n] by e1, . . . , em, setting m =
(
n
2

)
,

in any specific, but fixed, manner. Let f be any graph-theoretic function. We define a
martingale X0, . . . , Xm by giving values Xi(H), where H is sampled from G(n, p). Xm(H)
is simply f(H). X0(H) is E(f(G)); it is a constant. In general,

Xi(H) = E[f(G)|ej ∈ G ⇐⇒ ej ∈ H, 1 ≤ j ≤ i].

The Vertex Exposure Martingale. Again, let G(n, p) be the underlying probability
space and f any graph theoretic function. Define X1, . . . , Xn by

Xi(H) = E[f(G)| for x, y ≤ i, {x, y} ∈ G ⇐⇒ {x, y} ∈ H ].

Martingales give us access to stronger concentration inequalities than the Second Mo-
ment Method.

Theorem 30 (Azuma’s Inequality). Let 0 = X0, . . . , Xm be a martingale with

|Xi −Xi+1| ≤ 1

for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

P(Xm > λ
√
m) < e−λ

2/2.

Proof. Make a = λ/
√
m. Set Yi = Xi−Xi−1, so that |Yi| ≤ 1 and E(Yi|Xi−1, . . . , X0) = 0.

Then,
E(eaYi |Xi−1, . . . , X0) ≤ cosh(a) ≤ ea

2/2.

Then,

E(eaXm) = E

(
m∏
i=1

eaYi

)

= E

(
m−1∏
i=1

eaYiE(eaYi |Xi−1, . . . , X0)

)
≤ ea

2/2
E

(
m−1∏
i=1

eaYi

)
≤ ema

2/2.

By Markov’s inequality,

P(Xm > λ
√
m) = P(eaXm > eaλ

√
m) ≤ e−aλ

√
m
E(eaXm)

≤ e−aλ
√
mema

2/2 = e−λ
2/2.
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We can generalize the setting more.
Fix a filtration

∅ = B0 ⊂ B1 ⊂ · · · ⊂ Bm = B.

Let L : AB → R be a functional. We define a martingale X0, . . . , Xm by setting

Xi(h) = E(L(g) : g(b) = h(b) for all b ∈ Bi).

We say the functional L satisfies the Lipschitz condition relative to the filtration if, for
all 0 ≤ i ≤ m,

h, h′ differ only on Bi+1 −Bi =⇒ |L(h′)− L(h)| ≤ 1.

We can say:

Theorem 31. Let L satisfy the Lipschitx condition. Then the corresponding martingale
satisfies

|Xi+1(h)−Xi(h)| ≤ 1

for all 0 ≤ i < m, with h ∈ AB.

And we finish with the more general version of Azuma’s inequality.

Theorem 32 (General Azuma’s Inequality). Let L satisfy the Lipschitz condition relative
to a filtration of length m and let µ = E(L(g)). Then for all λ > 0,

P(L(g) ≥ µ+ λ
√
m) < e−λ

2/2,

P(L(g) ≤ µ− λ
√
m) < e−λ

2/2.

2.8 Chernoff Inequalities

Key Idea 8. Markov’s inequality can be exploited. Markov’s inequality only works for
non-negatives r.v. However, for any X, the key observation is that for any λ > 0, we
have

P(X > a) ⇐⇒ P(eλX > eλa) ≤ e−λaE(eλX).

After this, we can optimize in λ.

Theorem 33. Let EX = 0 and |X| ≤ 1, then for any λ > 0, we have

E(eλX) ≤ coshλ.

Proof. Analyze the function

h(x) =
eλ + e−λ

2
+
eλ − e−λ

2
x.

Notice that, for x ∈ [−1, 1], eλx ≤ h(x), by convexity of the function x 7→ eλx, since
(x, h(x)) is a point on the chord joining (−1, e−λ) and (1, eλ). Thus,

E(eλX) ≤ E(h(X)) = h(EX) = h(0) = coshλ

14



3 Brownian Motion. 1st Edition. (Peter Mörters and
Yuval Peres)

Going into every detail of this book would prove too ambitious. I try to focus on the
main ideas.

3.1 Brownian Motion

Definition 9. Brownian motion is a continuous-time t ≥ 0 stochastic process B(t) that
satisfies the following three properties.

• Increments are independent. That is, for any sequence t1 < . . . < tn, the r.v.
B(tn)−B(tn−1), . . . , B(t2)−B(t1) are independent.

• Increments are stationary. That is, for any t ≥ 0 and h > 0, the r.v. B(t+h)−B(t)
has mean 0 and variance h.

• Almost surely (meaning, for almost every ω ∈ Ω), B(t) is continuous for all t ≥ 0.

If B(0) = 0, we say it is a standard linear (one dimensional) Brownian motion. Other-
wise, we have to specify that B(0) = x ∈ R and say that Brownian motion is started at
x.

Such an object, while containing many restrictions which a priori may imply contra-
dictions, exists.

Theorem 34. Brownian motion exists.

Proof. We construct B(t) for t ∈ [0, 1], and then concatenate countably many of these.

Brownian motion has invariance properties. Some basic ones are the following.

Theorem 35 (Scaling Invariance). Let B(t) be a standard Brownian motion. For any
a > 0, the process X(t) defined by X(t) = 1

a
B(a2t) is also a standard Brownian motion.

Theorem 36 (Time Inversion). Let B(t) be a standard Brownian motion. For any a > 0,
the process X(t) defined by X(t) = tB(1/t), if t > 0, and X(t) = 0, if t = 0, is also a
standard Brownian motion.

According to the authors of the book, it is useful to think of Brownian motion as a
random fractal. The following results justify this nomenclature.

Theorem 37 (α-Hölder, with α < 1/2). If α < 1/2 then, almost surely, Brownian
motion is everywhere locally α-Hölder continuous.

Theorem 38 (Nowhere Differentiability). Almost surely, for all 0 < a < b < ∞, Brow-
nian motion is not monotone on the interval [a, b].

Almost surely,

lim sup
n→∞

B(n)√
n

= +∞, and lim inf
n→∞

B(n)√
n

= −∞.

Fix t ≥ 0. Then, almost surely, Brownian motion is not differentiable at t. Moreover,
D∗B(t) = +∞ and D∗B(t) = −∞, where D∗ is the upper right derivative and D∗ is the
lower right derivative.
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3.2 Markov Process

3.3 Dirichlet’s Problem and Harmonic Measure

3.4 Dimension and Potential Theory

3.5 Random Walks and Brownian Motion
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